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The Hydrogen Molecule in Strong Magnetic Fields: Optimizations of Anisotropic Gaussian
Basis Sets
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The anisotropic Gaussian basis sets were optimized for the H atom and the hydrogen molecule in strong
magnetic fields of 81000 a.u. We used five-parameter fit functions to generate anisotropic Gaussian exponents
of hydrogenic atomic orbitals. These functions provided errors of energy that were comparable to the
independent optimization of all the exponents. The optimal exponents were used to calculate the-Hartree
Fock energies of KHat arbitrary orientations, with respect to the magnetic field. Furthermore, the double-
exponential transformation was applied to calculate highly anisotropic Coulomb integrals. Between magnetic
field strengths of 1 a.u. and 100 a.u., a molecule in a triplet ground state continuously changed its stable
orientation from the perpendicular geometry to the parallel geometry.

Introduction physicists?-?2and later by astrophysicistdywho were interested

in the materials near white dwarfs and neutron stars. According
to these works, electronic clouds of atoms do not have the
nﬁ)pherical symmetry any more. They contract in the plane
2 erpendicular to a magnetic field due to the strong Lorentz force.
surface of bulk metal? The key element of the phenomenon Therefore, if molecular or atomic orbitals were expanded by

is that the energy levels of electrons are quantized in the - . . h
S the isotropic Slater or Gaussian functions, a great number of
magnetic field. Furthermore, a set of degenerate levels moves

across the Fermi surface, as a magnetic field increases. In othelpr'm'tlve orbitals with high angular momentum were re-
! gnetie L quired?4?5 Intensive studies have been performed on the
words, the magnetic field induces transitions between the highest . .
: ) . “hydrogen atom to improve the accuracy of energies and
occupied molecular orbital (HOMO) and the lowest unoccupied .
- ; . wavefunctions. Recently, Kravchenko et al. developed a com-
molecular orbital (LUMO). Because of the succesive transitions,

A . . . .’ putational method that provides exact power series solutions
g}‘;g?ggﬁ;lz fg'?Qea%%éﬁgeogizeﬁaostigf;ﬁ scillate in the IOerIOOIof the hydrogenic Schidinger equation in a magnetic field of

h t f oh h lect arbitrary strengtfi-28 The binding energies of the ground state
nfir? Zﬁ?er%p? r? p dernnortn?incl)nrocculﬁ dvr\; elnme fcrircl’n_?h?reand several excited states were reported with an accuracy of
ico Z” raf rrgdstage h a,ih:ro chyhm (Xg) ?fectal-n S 1012 hartree for a field strength of & 104—4 x 10° a.u.
S usually relerred 1o as the Aharonowo \b) elfect. Reviews?%30 books3132 and conference papéfshave been
the AB effect, the quantization is due to the circular boundary . : .
o . published on this subject.
condition. The transitions occur between two states that have

different angular momentum values. The spin Zeeman interac- For the molecular quantum chemical calculations in field free
tions are usually ignored, compared to the orbital Zeeman space, the Gaussian basis sets have long ago become a standard

interactions, because of the large area surrounded by theM€thod®* In strong magnetic fields, various methods have

material. The period between successive transitions is deter-.been examined for the two different molecular systems, #fe H

38,39 0-43 .
mined from the flux quantization condition. The subsequent lon and the H molecule? For extremely strong fields

transition occurs when the flux penetrating the conducting ring 1 x 10°T), i.e., 420 a.u., Landau-type orb_ita}ls_ have _bee_n
increases by a quantum fluo = hle from the preceding applied. H atoms were shown to form stable infinite chains in

; 5 . . .
transition field. The direction of the persistent current is reversed a field greater than 400 a'tr.“ For |ntermed|atelf|eld strength§
by these transition®.5 The AB effect has been studied for of 0—100 a.u., Schmelcher and Cederbaum introduced aniso-

superconducting rings;# mesoscopic metal rindsand semi- tropic Gaussi_an primitive orbitals_ to expand the molecular
coductor quantum dofé:1!More recently, the intensive studies  °'PItals effectively’’ They also multiplied the London’s gauge

of this effect have been performed on carbon nanotédds factors to the Gaussian orbitals to form the gauge-invariant
It is natural to extend such studies on bulk, mesoscopic, and atomic orbitals (GIAOs}?% Hereafter, we refer to the method

nanosized materials to those of small molecular systems, where?s the anisotropic GIAO method.

very accurate quantum mechanical calculations are podiBfe. ‘Schmelcher and co-workers have been successful in applying
However, there is an obstacle to this extension. To induce the this anisotropic GIAO method to molecular systems such as
level crossing in molecular systems, the required magnetic field the H* ion°"%% and the H moleculé>*®in a field range of
strength is often close to 1 a.u. (i.e., 2.85L0° T). Electronic 0—100 a.u. These works replaced the previous works, because

states in such strong fields have been studied by atomic©f improved accuracy. For example, they determined the
transition field strengths of fithe ground state changes from
 Author to whom correspondence should be addressed. E-mail address: 2g {0 *Zu at @ magnetic field of 0.18 a.u. and becordBs at
a.kubo@kuchem.kyoto-u.ac.jp. >12.3 a.u. However, they have investigated only the parallel
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Strong magnetic fields have been applied to investigate the
electronic structures of conducting materials. For example, the
de Haas van Alphen effect has been used to measure the Fer
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geometry of the molecular axis, with respect to magnetic fields. following equation:
In the preceding studies on the,Hion, they have presented

two-dimensional potential energy surfaces as a function of bond

length and orientation. The energy minima of some excited states Eelm,vz = (5)
appeared at the arbitrary angles in the range o©f9m°.
Therefore, it is also possible that the ground states ofidle
potential minima other than those in the parallel geometry.

In the aforementioned equation, the gradient matr}i’z&% and
Schmelcher et aP’ as well as other researchers who tested veSare obtained from the matrix elementstéfand S for the

the anisotropic GIAO metho®,applied rather large basis sets. hig'he.r polarization states, becausg the following relations are
To extend the studies to larger molecules or atoms, we mustSatisfied for the derivatives of basis sets:

know how to generate compact and efficient basis sets for a 3 m+ 1
given error level. Moreover, to enable the studies on field- —— = {2— — ¢+ yz)}xﬂ“"’z (6)
dependent properties of molecules, systematic methods must i Sk

be known, rather than numerical tables of the basis sets at several P 2v,+ 1
field strengths. In this paper, we will reinvestigate the anisotropic P = T v DG (7)
GIAO method in these aspects. Furthermore, we apply the Cak o

method to investigate the field dependence of the potential

energy surface of the +Hmolecule. The independent optimization of all thé&lgparameters was

possible, even foKg = 10. However, the initial parameters must

be set close to the final optimized values, otherwise, the

optimization proceeds very slowly. Therefore, the initial sets
Before examining the molecular electronic structure, we must myst be obtained from a few parameter optimization by

procedures to determine the most effective basis sets for a giveryften used the mixed SlateGGaussian-type orbitals, which are
accuracy have been documented in défail. However, there  expressed By-64

seems to be less knowledge for the basis sets in strong magnetic

fields. In this section, we will describe the method to optimize

the hydrogen basis sets and subsequently present the results of

optimizations. The procedures to evaluate the molecular integralsThe parameteb vanishes when the magnetic field strength

are given in the Appendix. As shown in Appendix A-4, the s zero. It approaches a value '8fB, asBy increases. Because

double-exponential transformatf§rwas efficient to calculate  the Slater function can be expanded by Gaussian functfons,

numerically highly anisotropic Coulomb integrals. we can assume some relation between the perpendicular
According to the recipes of Schmelcher and co-workers, we exponents and theexponents{ox = Eox(CzkBo). We will test

can expand the hydrogen atomic wave function by the aniso- the following two-step procedure to generate the exponents. At

tropic Gaussian orbitalg,"" first, the parallel components of the exponents were generated

Optimization of the Hydrogen Atomic Orbital

y ~ exp(-ar — bp?)

by
NQ
P02 =5 G @) L= Ga exp{—(k— 1) In B}
= Gp, BN Bl(ky — 1) — (k= 1)} (8)
where Ng is the number of primitive Gaussian functions and #o o
%" is given by where

2 Y:2) = Ny, (GO{X + i sgnm)y} ™2 expf =&, (¢ +
Y)— &t @)

wheremis the magnetic quantum number ands thez-parity.
The normalization factorNm,,(Cx)) is given by

. Ng
ky=int|5)| +1 )

The aforementioned equation reproduces the Huzinaga's 10
exponents of the H 1s orbital, whép; = 1170.4983 = 6.7,
andy = 0.785% We examined two functions that generated
the perpendicular componenisy from &nx and Bo. The first
function was given by

Co= {gz,ké + (%1 Bo)é} ’

Nm’yz(ék) — {ﬂ3/2(2§D'k)*(m+l)(2€Z’k)*1/2(21/Z+l)m!2*1/1 %

(2v,— DN} (3)
The expansion coefficient§" = [c; - cy,] are obtained by (10)
solving the eigenvalue equation:

M IR0 = ey, B IS0 ()

whereH is the one-electron Hamiltonian argis the overlap
matrix. y;""* is the complex conjugate of"".

The ground-state energy within then,{,) manifold (e,ln:})
was optimized with respect to théNgparameter sets xSk} -
The optimization procedure used the gradientem, with

whered was fixed toa value of 2.35. The three parametésg,(
B, andy) in eq 8 were optimized. The second function was
given by

B 1 0By + (E,uBy)
o= B \/ 167 11 aeye

wheren and& were variables. The total five parameters were

(11

respect to the exponents, which can be calculated by theoptimized under the restrictiod = 0.
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TABLE 1: Best-Fit Parameters of Hydrogen Atomic

0.01-15517)517507 I i (b) 2p0 --152)3‘231 /; 3 Orbitals, According to Egs 8, 9, and 11
T ' 7:7.;07/_ P Bo(au) Cato B 7 £
G1E-34 10:—A——a_ O+ n + L
s S
g S S S - 1 075 3.95875  7.12537 0.0424609 0.0291636
1E41 g2 ol N T e el 10 071 10.4565 105976 0.120107  0.0388161
o) o oot i 100 071 315400 12.0437 0.162815 0.0371274
oy o S e 1000 071 54.2199  11.1100 0.184319  0.0341019
1E-5 4 ¥ A% ] 2m, Ng=7
A / 1 084 0.388684 365292 0.125198 0.0282317
1E64 X 1/ - 1 I 10 0.84 0.753819 3.93842 0.139638  0.0141082
—A 8 5 100 084 1.203698 4.28456 0.132807  0.00686369
0 1 101001000 0 1 10 1001000 1 10 1001000 1000 0.84 1600656 4.60689 0.214121  0.00551230

B,/ au. 2p1, Ng=7
Figure 1. Errors in the orbital energy of an atomic hydrogen calculated 1%) 8;? gggii? gg%% 8%26132:3 882388};‘
with the anisotropic Gaussian basis sets. The errors were measured 100 0'82 8'87282 5.16754 0'262666 0'0351179
from the exact values of ref 27. The closed characters were obtained 1000 0.86 25'3203 4.73697 0.280796 0.0305946
by the optimization using eqs-8.0. These sets of exponents were used ' ' ' ' '
as the initial parameters in the independent optimization of all the ) .
exponents. The results are shown by the open characters. The differentisted in Table 1. In Figure 2, the curves of tagomponents
characters are used to distinguish the numbers of Gaussian oMjtals &,k shift upward, as the magnetic field increases. The magnitudes
The crossesx) correspond to the results of the optimizations using of shifts are different for the three types of polarization. The
egs 8, 9, and 11. This optimization was performed only for the largest 2p_; polarization shows the largest shifts. The perpendicular
values ofNy. The notations ks2p, and 2p refer to the lowest-energy componentsyy = Eoy are close td, whent > Y,Bo. They

levels with the symmetryngz) = (0,0), (0,1), and £1,0), respectively. are saturated at the levels'tfBo, whenl,x < %4Bo. This means

< s, 2, i, that electrons are confined within the region @§é+y? <
100 “\ | i [ o L 2/,/B,.
] D\\ ——v—v :[;\'7' Iv—fv v i ;".:7] ;tﬂll*

::10 D\VE\K{-I o o
S N
N

The Hydrogen Molecule

To—a—a B =10au.

\KA-: \ A In the first part of this section, we will examine the selection
0\ v OXV B,=100a.u. i i i - I 1 i
s N\ \&, of basis functions, especially, the p-type polarization functions
0.1 E :\i 4 for the Hartree-Fock (HF) calculations of kin strong magnetic
I S S fields. Next, we will use those basis functions to calculate the
12345 123 123, electronic energies and the wavefunctions, as a function of the

Figure 2. Optimal exponents of the 5s1p and the 5s3p basis sets. Themagnetlc field strength and_ the molecular geometry.

5s orbitals and the 3p orbitals for the different polarizations; 2md The_ hyd_rogen p-type orbitals are usu.ally added to "eP"?SGnt
2po, were determined by the energy optimazations of a hydrogen (H) the distortion of the s-type atomic orbitals by the zero-field
atom. All the exponents were varied independently. The perpendicular molecular orbital calculations. They are called the polarization
component§u, = Ey are represented by the closed characters, whereas functions®® The exponents of the polarization functions are
the z-componentsZ;y, are represented by the open characters. The \;5a]ly determined to minimize the total molecular electronic

exponents of the 1p orbitals are represented by the two connected bars : :
The upper holizontal bars represent the values,ef whereas the lower energy. The exponents obtained by this procedure can be very

bars represent those of:. The exponents increase monotonically, as different from those of the atomic 2p orbitals. For example,
the field strength increases. These values were obtained from the energgh€ 6-311G** basis set by Pople contains a hydrogen p-type
optimizations of the singlet state of & Iholecule. polarization function with an exponent of 0.75; this value is
comparable to the middle exponent of the five s-type functéns.
The results of the optimizations are summarized in Figure 1. On the other hand, the procedure is inappropriate for the triplet
The error in energy was calculated by using the exact energiesstate, especially for théll, state. The HOMO of this state
reported by Kravchenko et &l.The errors of the optimization  consists mainly of the 2p orbital. Therefore, it would be better
based on egs 810 are much larger than those of the to use the atomic 2p orbitals instead of optimizing a single set
independent optimization, whely is the largest. However,  of p-functions.
egs 8, 9, and 11 provided the comparable values to those of the Here, we will test the two types of basis sets. In both basis
independent optimization. sets, we used the five Gaussian functions obtained via the energy
Kravchenko and Liberman proposed a different scheme to optimization of the atomic 4sorbital. These were split to the
generate the 3$ydrogen basis sets in strong magnetic fiéfds.  inner, the intermediate, and the outer orbtals, which contained

They used the even-tempered exponéfs, which corre- 3, 1, and 1 primitive Gaussian functions, respectively. In the
sponded toy = 1 in eq 8. Furthermore, they used the multiple first method, we added a single set of isotropic or anisotropic
sets{C‘DYk,szk}, where the total number gf was 1-5. They p-type Gaussian functions to the s-type set, and optimized their

obtained errors between 10hartree and 1@ hartree for the exponents and the bond length. The exponents of tloehital
fields of 1-1000 a.u., using 70 Gaussian functions. Forty were assumed to be different from those of theapd the p
Gaussian functions were applied to obtain accuracy that is orbitals. The former exponents were determined by the calcula-
comparable to our best results. Thus, our results are a factor oftions in the parallel geometry, whereas the latter were deter-
4 more economical than these results. mined by those in the perpendicular geometry.

Some of the optimal exponents are plotted in Figure 2. These In the second method, we added the three sets @f 2p
were obtained by the independent optimization of all the exponents and the three sets of 2pxponents obtained in the
exponents. The optimal parameters based on egs 8, 9, 11 ar@revious section without contractions. The former sets were used
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TABLE 2: Total Energies and Equilibrium Bond Lengths of the Singlet States of H versus Applied Magnetic Fields Obtained
by Various Basis Set3

this work (HF)
basis set 5s1p (iso.'p) basis set 5s1p (aniso.cp) basis set 5s3p Detmer et aP® (Cl)
Bo(a.u.) e(au.) C'ZS; Run (@.u)  e(a.u.) Copn Copz  Ran(@u) e(au) Run (a.u.) € (a.u.) Run (a.u.)
HH // By
0 —1.1326 0.95 1.39 —1.1306 1.39 —1.173436 1.40
1 —0.8465 1.2 1.22 —0.8465 1.19 1.18 1.22 —0.8464 1.22 —0.890336 1.24
10 5.9532 3.7 0.69 5.9532 405 3.08 0.69 5.9535 0.69 5.889023 0.70
100 90.6370 21.0 0.33 90.6360 26.6 9.8 0.33 90.6388 0.33 90.506974 0.334
HH OB,
1 —0.8159 1.06 1.15 —0.8159 1.06 1.03 1.16 —0.8172 1.16
10 6.3332 3.0 0.56 6.3280 3.07 132 0.56 6.3234 0.56
100 92.7329 25.0 0.225 92.6533 26.1 3.6 0.229 92.6362 0.23

aThe five optimal Gaussian functions of the, ksomic orbital were used with the-3—1 contraction® Single isotropig-type Gaussians were
added to the aforementioned 5s orbitals, and the exponent was optimized by minimizing the total molecular electronic energy. The optimal exponents
are also listed® Single anisotropic Gaussians were added to the aforementioned 5s orbitals, and the exponent was optimized by minimizing the
total molecular electronic energy. The optimal exponents are also IfsTét three optimal Gaussian functions of the apd 2p; atomic orbitals
were added to the 5s orbitals without contraction.

for the p orbitals, whereas the latter sets were used for both Singlet B, = 10a.u.

the p. and g orbitals. Only the bond length was optimized in 20 ' ' \

the second method. Hereafter, these two basis sets are referred S . 6.5

to as 5s1p and 5s3p. Through this paper, we applied only the Qso-//—\ N
HF method to calculate the electronic energies. The wavefunc- -

tions obtained by this method are easily visualized. We describe cmﬂ\ﬁ\

the details of the algorithms to evaluate the molecular integrals 304 — ‘;\\\5\‘\\\ I
in Appendices A-+A-4. - \‘go\\}\\\

The results of the optimizations for the singlet states are //_§ ' N
shown in Table 2. We also present the results of the configu- s o o7 o8 oo
ration interaction (Cl) calculations by Detmer et al. for R, /au.
comparisor?® The energies of the 5s1p basis sets are always Figure 3. Total energy contour of the singlet,Hsystem atBo =
lower than those of the 5s3p basis sets, by-@B x 1073 10 a.u., plotted against the molecular geometrigg;,(©).

a.u., when the magnetic field is parallel to the internuclear

vector. However, this. order is reversed for the perpendicular the | calculations by Detmer and co-work&t&8For the triplet
geometry. The energies of the 5s3p basis sets are lower thantates, the 5s1p basis set was inappropriate in the field range
those of the 5s1p basis sets by-113.1x 10-3a.u. The optimal (g, > 10 a.u.). This basis set always gave energies larger than
exponents of the 5s1p basis are plotted in Figure 2 with bars. thgse calculated with the 5s3p basis set. For the parallel
The upper horizontal bars correspond g, whereas the lower  grientation andB, < 1 a.u., both the basis sets provided almost
bars correspond t;x. The exponents are almost isotropic at  the same energies, because the wavefunction was very close to
Bo = 1 a.u; however, they becomes anisotropic Bar > those of two non-interacting atomic hydrogens in thestate.

10 a.u. For the 2p, type polarization, the optimal exponents  ap interesting finding here was that the perpendicular orientation
of the 5s1p sets are within the ranges of the atomic 3p exponentsyas the most stable B, = 1 a.u., whereas the parallel
However, for the 2ptype polarization, the optimal values of  grientation became the most stable B = 100 a.u. The

Czk are always larger than those of the 3p exponents. The molecule must change orientation between these two field

differences are noticeable for the field strength8gf- 0 a.u. strengths. For confirmation, we calculated the two-dimensional
andBo > 100 a.u. The 5s3p set can be applied for the singlet pess at the three field strengths (1, 10, and 100 a.u.) and plotted
state if a single set of jexponents is added. them in Figure 4. At a field of 1 a.u., the potential minimum

The electronic energies of the singlet state were always thewas located atRyy, ©) = (2.8 a.u., 96). The minimum moved
lowest when the molecule was parallel to the magnetic field. to (Ryn, ®) = (1.0 a.u., 37) at Bp = 10 a.u. and then to
For confirmation, we have calculated the potential energy (0.38 a.u., 0) at the largest field oBy = 100 a.u. The K
surface (PES), as a function of the interproton distance, andmolecule changed the orientation continuously between 1 a.u.
the rotational angle of the molecule, with respect to a magnetic and 100 a.u. In Figure 4c, the PES shows a cusRiat, @) =
field. We used the 5s3p basis set. The results are shown in(0.85 a.u., 6). The present results agree with those of Zaucer
Figure 3. This behavior of the preferred orientation is attributable and Azmarf®® who showed that the perpendicular orientation is
to the diamagnetic nature of the singlet orbital, because the more stable than the parallel oneBat= 1 a.u. Liberman and
diamagnetic energysBo?(x? + y?) has a minimum in the parallel  Peetrov reported the results which resemble but differ from the
orientation. Because of the anisotropic shape of th@dstals, present calculation® These authors performed variational
the equilibrium bond length is much shorter in the perpendicular calculations at the two field strengths B§ = 50 a.u. and 100
orientation than that of the parallel orientation. Therefore, the a.u. However, they ignored the fact that the two triplet states,
internuclear Coulomb repulsion also destabilizes the perpen-33%, and 8I1, could mix with each other for the general
dicular orientation. orientations of the Bimolecule.

We repeated the same procedures for the triplet states, and Naturally, the following question arises: How does the
the results are listed in Table 3. We also present the results ofelectron cloud deform during this continuous change of the
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TABLE 3: Total Energies and Equilibrium Bond Lengths of the Triplet States of H, versus Applied Magnetic Field
this work (HF)

basis set 5s1p (iso. ) basis set 5s3p Detmer and co-workets>¢ (Cl)
By (a.u.) e (a.u.) C'SO Run (a.u.) € (a.u.) Run (a.u.) e(a.u.) Run (a.u.)
HH // By
0 —0.9995 0.012 7.6 —0.9995 7.6 —1.0000173 7.9
1 —1.6619 0.22 6.8 —1.6619 6.8 —1.6623090 7.5
10 No min? —3.4464 0.82 —3.466244 0.82
100 No min®? —8.1794 0.38 —8.236318 0.38
HH O Bo
1 —1.66398 0.54 2.7 —1.66413 2.7
10 No min® ~3.4987 [-3.5504,0 = 37°]°  0.91[1.00]
100 No min®? No min.

a2The notations of 5s1p and 5s3p are the same as TaBIbl@ potential minimum was obtained; the total energy was much larger than that
obtained by the 5s3p seétThe potential minimum is located a®{y, ®) = (1.00 a.u., 37).

(a) Triplet B, = la.u. B = la.u.
90+ . '
b (a) o= 0 deg.
3 y 51R_ =638 r
) . <
oA i :
0_ L
30 -
650\ 5] i
oL ke Alg=0.05
3 R, /au. 10 5 0 x/au 3
(b) B,=10 a.u. (b) — . ‘
90 . 5_ ©=45 deg. [
& E =45
=) <
560 N
L o] i
—— -5 -
N————— Alg = 0.05
(c) -5 0 r/an?

5 |©=9% deg.
S Ry =27
N

0
A . . L 2 -
90 T
7.4
04 L
L
24 L

Algi=0.05
-4 —

4 2 0 2 4
x/au.

@/ deg.

0.4 0.6 0.8 1.0
Rm_l /a.

Figure 5. Contour maps of the HOMO wavefunction for the triplet

) ) H, system. A magnetic field dBo = 1 a.u. is applied along theaxis.
Figure 4. Total energy contours of the tripletldystem at the three  The amplitudes in the plane containing the two protons are plotted.
magnetic field strengthd, = 1, 10, and 100 a.u., plotted against the  The bond direction is shown by a thick line, the interproton distance
molecular geometriesR(, ©). Run is shown by the atomic unit, antl|$| is the separation between

. . . . the contour lines.
molecular orientation, as the magnetic field increases? We have

calculated the amplitude and the phase of the wavefunction onsingle nodal line passing through the center of the molecule.
planes bisecting the molecule. For atdolecule in its general ~ The phase of the HOMO changes through the path rounding
orientation, with respect to the magnetic field, the rotational the nodal line. In Figures-57, we plotted the amplitudes of
symmetry is lost and there is only the inversion symmetry with the HOMO at three different field strengths and for different
respect to the molecular center. The lowest orbital of the triplet molecular geometries.

ground state is related to the gerade symmetry and does not At B, =1 a.u. and a® = 0°, the HOMO is the &, orbital,
have any nodes or nodal lines. On the other hand, the HOMO as shown in Figure 5a. The amplitude of the HOMO has two
belongs to the ungerade symmetry and has a single node or anaxima, which are completely separated by a nodal plane. In
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B0 =10 a.u. B0 =100 a.u.
(a) @ 0 T () .
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-2 Alg=0.1[ 10 05 00 05 10 05 '
r y T T T : i . - . -0.5 0.0 0.5
2 1 0 1 2 (b) x/au. (e) x/au
(b) x/au. . . . L L 5 ) ) )
e 5 1.0]@=40 deg. L 5 |e=0de
5 2- 2] i71d0eg. | s R, = 04 o R, =09au.
s HH . N N 14
3 0.5] L
14 L
0.0 L 04
04 L
-0.51 L ]
14 | -
-1.0 A§=05Ff Al#=05
2 Alg=0.1 -1.0 -05 0.0 05 1.0 5 1 0 1 5
T T T v T /au.
2 1 0 1 2 (c) T €5 . ‘ x/au.
(c) x/au. Z0%0=90deg " 05] @=90deg
. 2{6=90deg. L NOS—RHHZOA i 3 RHH=0'4
g |R,=091 z
N 1- - 0.07 7 0.0_
04 - -0.5 L
-14 3 -1.04 Al =05 -0.51 Al =05
-1.0 05 00 05 1.0 05 00 05
24 Alg=0.1} x/au
2 B P T 7 Figure 7. Contour maps of the HOMO wavefunction for the triplet

H, system at a magnetic field strengthRsf= 100 a.u. The amplitudes

) . . in the xzplane containing the two protons are plotted in panels a, b, c,

Figure 6. Contour maps of the HOMO wavefunction for the triplet  ang . The bond direction is shown by a thick line, the interproton

H, system at a magnetic field strength&f= 10 a.u. The amplitudes gjistanceR. is shown by the atomic unit, andlj¢| is the separation

in the plane containing the two protons are plotted. The bond direction petween the contour lines. Panels d and f are the contour maps in the

is shown by a thick line, the interproton distarRe is shown by the xy-plane containing the molecular center. The former was calculated

atomic unit, andA|¢| is the separation between the contour lines. for the molecular geometries identical to that of panel a, and the latter
corresponds to panel c. Panel e was calculated for the orientatien

Figure 5¢ @ = 90°), the nodal plane changes to a nodal line, 0° and at an interproton distance slightly longer than te—°%,

and there is a finite electron density in tkgplane. (See also ~ €rossing point.

Figure 7f for the plot in thexy-plane at the larger field d8, = ) ] o )

100 a.u.) Because of this continuous distribution of the electron Showed incompletely the existence of the conical intersections

density, the HOMO of Figure 5c has a little bonding character. Of @ Hz" molecular ion in the magnetic field of 1 a®tKappes

Therefore, the perpendicular orientation becomes more stable2nd Schmelcher reported more-complete studies on the conical

than the parallel orientation & = 1 a.u. intersections of the same systém>*

At Bo =10 a.u. and® = 0°, the HOMO changes to ther} Appendix A-1. The Anisotropic GIAO Method
orbital, as shown in Figure 6a. When the molecule rotates to
the orientations shown in Figures 6b and 6c, the orientation of ~An Gaussian gauge-invariant atomic orbital (GIAO) centered
the nodal line stays nearly parallel to the static magnetic field. at C with anisotropic exponent&: is given as
At the potential minimum shown in Figure 6b, the HOMO is a ) ~
distorted donut, which can be generated by mixing ihgahd C.= |_| Mg expTFEoTe— AT (Al
the 1w, orbitals. The distinction between these two orbitals exists i=xy.z
only with the parallel geometry o® = 0°. For the general _
orientations, the HOMO changes continuously as a function of wherefc =7 — C, andcC is an integer vector, the sum of which
©® andRyy. When the interproton distan&yy is varied on the is the angular momentumd\c is the vector potential &t:
line ® = 0°, a cusp appeared By ~ 0.85 in Figure 4c. We
calculated the amplitude of the HOMORY = 0.9 and plotted < 1l = 1, =
it in Figure 7e. Tt?is figure does not compare with FF?gure 7a. Ac=2Box C= EBOeZ x C (A2)
The symmetry of the HOMO changed discontinuously from 1 _
to 1oy whenRyy increases across the cusp. Therefore, the cuspWe choose the-axis along the static magnetic fieRb. With
in Figure 4c is attributable to a conical intersection point between these coordinates, the exponent matfixis assumed to be
two energy levels belonging to the ungerade symmetry. Wille diagonal:

x/au.



5578 J. Phys. Chem. A, Vol. 111, No. 25, 2007 Kubo

o0 O variablet, which is given by the following equation:
=0 &poO (A3) i
0 0 & =" (A14)
Schmelcher and Cederbaum proposed a unique method to u +¢,

generate the molecular integrals of the higher angular functions

from those between the 1s Gaussian functiBritey introduce Equation A13 becomes
a new parameted and multiplied the exponential function by

the pair of the s-type primitive GIAO orbitals:

-1
JE— 1 &n
— — o — - ST I(C, PHC )(O) — dt X

{0*0p}3 = 0c*0p exp@ '+T) (A4) ./(]) 1-— tZ(CD - &e)e,
The atomic orbitals with higher angular momentum were —, t2 —
obtained by the differentiations with respect to the components ~ €xp —&,P"Cy > — {P'CA%) (A15)
of J: 1t — &)y
- B ¢l a 4 . Whenp = &, the aforementioned integral reduces to the zeroth-
Ccrdp = — G {7~ Di| {0c"0p}3 (A5) order incomplete gamma functioRo:

i=xy,z 8Ji a‘-]i =0

This algorithm is simpler than those that apply the differentia- l T=2e ©_ 1 —r PC2
tions, with respect to nuclear coordinatés’® We also refer o IZT o tdl6.PC) L/()) dt exp(— L CY)
the reader to the recent paper by Ishida on isotropic GIAO = E(F P'C2 Al
integrals’* olGisP'CY) (A16)

The basic integrals were obtained in the same way as that
done by Boy&*and also by Singe® The important modification
from the ordinary molecular integrals is that the positional vector
P is replaced by the complex vectBf, which is given by the o o o
following equatiort? (OA*OBrlziloc*OD)jl,jz =27 2 !/(‘)oo du(0,*0g x

expur2 + 3T, + J,7,)0.50,) (AL7)

The basic electron repulsion integrals (ERIs) are given by
the following equation:

D e —l/& A . R iA*ﬁ 1A -173
P =8 'CA+EB) + 580 At 58w T (A6)

Eo=E 48 (A7) Here, two vectors; andJ, are introduced for the two electronic
- = i coordinatesr; andT»,, respectively. The final results reduce to
A =Ar— Ag (A8) the following form:

The basic overlap integrals are calculated to be

(BA*6B)3 = HS/Z(Cab,DZCab,Z)_1/2KAB(I_5”) (A9)

(6A*6Br12716C*6D)31,32 = ZﬂSIZKAB(IS”)KCD((_j”) X

where kj:lz Cank T Eea) A3, P'QN)© (A18)

KAB(_F3") = exp@”Téabls” - z\Téaﬂ - ET&B) (A10) whereQ'" is the complex vector analogousR, but for atoms
C and D. The three components of the tengare given by
The normalization constant is given by the following equation: the following equation:

1/4, a2
2\3/4 Cai (48, &l
al g (2a — 12 Skab T Gieea
The basic electron nucleus attraction integrals are given by the The molecular integrals between the s-type orbitals are obtained
following equations: from the aforementioned formulas, whénare set to the null
value.

(Oa*re "0g)3 =27 2 7 du(0,* exp(—uPre” + J-T)0p)
B Appendix A-2. The Recurrence Relations between
= 27K s (P&, P'C)@ (A12) Electron Repulsion Integrals (ERIs)
) . ) ) ] To derive the recurrence relations between the ERige
We will rewrite the aforementioned integral with the new need only the following two relations for the differentiations,
with respect tal;:
20 = du
1€, Prc)? = x
@ or 2
- - a‘]k,l
UZCDP”CDZ UZCZPHCZZ
expg — - (A13) I T —— B J
uZ + QD u2 + @Z (Fkl I(p’ PI!QH )(n) — _Ck,ab lpkp”Q” (P; PIIQH )(n+1k)
' (A21)

Kas(P") = P ps(P") (A20)
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TABLE 4: Comparisons of the Two Integration Methods: The Gauss-Legendre Quadrature Method (GL) and the
Double-Exponential Formula (DE)

Npoint 1 OE PCp) ™ 1O, PCy)pe 1O, PCy )5 > 1O, P'Cy)pe
10 0.0118636102 0.0126819596 —0.0344932507 347.6521742820
14 0.0123507237 0.0126785910 0.4915735505 153.0265189884
19 0.0125756000 0.0126784402 —3.6922388008 316.9291153394
26 0.0126586630 0.0126784426 25.6166742405 257.1203955984
36 0.0126766118 0.0126784426 —113.0154738400 262.7458865742
50 0.0126783783 0.0126784426 —0.5707574670 262.8377134995
70 0.0126784420 0.0126784426 386.5494234809 262.8378762291
98 0.0126784426 0.0126784426 283.0116945927 262.8378762387
138 0.0126784426 0.0126784426 262.2019804186 262.8378762387
195 0.0126784426 0.0126784426 262.8385683866 262.8378762387
275 0.0126784426 0.0126784426 262.8378761198 262.8378762387
388 0.0126784426 0.0126784426 262.8378761841 262.8378762387
548 0.0126784426 0.0126784426 262.8378704249 262.8378762387
774 0.0126784426 0.0126784426 262.8378733743 262.8378762387
1094 0.0126784426 0.0126784426 262.8378748681 262.8378762387
1547 0.0126784426 0.0126784426 262.8378747120 262.8378762387
2187 0.0126784426 0.0126784426 262.8378735895 262.8378762386
3092 0.0126784426 0.0126784426 262.8378735598 262.8378762387
4372 0.0126784426 0.0126784426 262.8378738956 262.8378762387
6182 0.0126784426 0.0126784426 262.8378734302 262.8378762387

agy =250, = 1.8. "R P'C} =0; IM{EP'C2 =0; 5P CL2=0. R L P Cy} = — 15, Im{EP'Cyrf} = 20; E,P'C,2= 0.

The following integrals are analogous to the higher-order

T P S N
incomplete gamma functions: P'=Cap (CAT B + 2 Sar Pag (A24)

In the same way, the LREHS recurrence relatidh’® can be

A T——\(R 1 dt -
1(¢, P ,,)(n)E % derived:
° ) G+ L1 - 1) e
tp nekn, (@x*0gry, (€ + 1)c*0p) " =
z 2n g - - =~ (A
— " % abx ,,— —1= (M)
- a+ 1),*0gry, Co* +
@th + éD(l _ tZ) cdx (( X)A B'12 C D)
gabx
— gt — (Q’C + (@,*0gry, Ct00)™ +
ex _PnQu DZQD z _ P,,Q,,22§Zt2 (AZZ) X Ccdx AX A B'12 D

P+ (1—1)

The vertical recurrence relation is given by the following
equation?®

1 .
E)ngcd,x l(aA*OBrlz Ye - 1><)C*0D)(n) +

( )axccdxl((a - 1x)A Brlziléc*oD)(ﬁ) (A25)

The horizontal recurrence relation is simply derived from the

9 a
(a+ 1x)A Bl 0 *0 )(n) ’ (5_ Ai) .
i=xy,z \0J; 1 following equation?®

0
P Ax)(o OB 127 0 OD)JlJZ 0 0 -
(a‘]xl 31=32=0 (3_‘]k - Bk) = (8_‘Jk - Ak) + AB, (A26a)
DA (B *O —17 xn (@ Px o = x| 1 1z =
= P'A(ay*0gr 1, 100 OD)(n) - : Qy x (@ (b + 1x)Br12 ! D) =(@+
X
) 1), gl 1, 6c* do)™ + AB(3,* Bar 1, 16c* dp)™
L 17 L= (T 1 _ A B 12 A MB'12 C
(8a*0gry, "0c*0,) " 4 — (é)axéab,x ' (A26b)

The same relation is also satisfied Tandd. Similar recurrence
relations can be easily derived for the overlap and the electron-
nucleus attraction integrals.

(@ = 1,)4*0gr, "040,)™ —

Px 3
o ((a x)A Br12 OC*OD)(n_HX)} (A23)
abx

Appendix A-3. The Kinetic Integrals

In the aforementioned calculation, initially, the inner differentia- The kinetic energy integrals are easily obtained from the
overlap integrals. The operator of kinetic energy is defined by

tion was executed, thel?{ A, andP"Q", were exchanged with the following equation:

the differential operatorg]i=xy,z (3/0J;,1 — A)d. The important '

modifications of eq A23 from the corresponding equation in A M=o 1, .= =0

ref 73 are that the vect(ﬂ and the exponeriy,iso are replaced T= ( )H - Q(_'V +A) (A27)

by the complex vectoP’ and Cabx, respectively. The complex

vectorP' is given by the following equation:

2

where ﬂ(r‘) = 1/2§o x T is the vector potential at for the
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symmetric gauge. The kinetic energy integrals are calculated

from the overlap integrals:
IR | _ .
(@x*{Tbg}) ZE z {M@as}* {1 bg}) =

k=Xy,z
1
2

{(E)akbk«é — T)a*(b — 1)g) + 28, Lpil@ +
k=xyz W\l L
1)a* (b + 1)p) — alp((@ — 1)a*(b + 1)) —

I -~ - 1, -
Bla(@+ 1)a*(b = 19p)t +|-|By z (@+ 1),*

8 I=Xy
. 1 .
(b+1)g) + (Z)iBo{ a((@—1)a*(b+1g) —
3@~ L) (b + L)g) — b((@+ L)a*(b — L)p) +
_l:')x((a;—i_ 1y)A*( b— 1x)B) + Z(Czlx + gb_y)((—a;—i_ 1x)A*
(b+1)p) — 2(Cay + Gpd((@ + 1)4*(b + 1))} (A28)

To use the aforementioned formula, the overlap matrices
(A + L)a*(b + 1)g) were calculated.

Appendix A-4. The Numerical Integration of Coulomb
Integrals

If the exponents are very anisotropit (> ¢,), the term{1
— 3o — &)I¢} L in eq A22 almost diverges at~ 1. The
ordinary numerical integrations, such as the Gallegendre
guadrature, were inefficient. This difficulty was resolved by the
double exponential transformatiéh:

t= tani(% sinh u) (A29)

The new variable ) was sampled at the evenly distributed
points in the range from 0 ta. In Table Al, we compare the
convergence of the two integration procedures: the Gauss
Legendre method (GL) and the double-exponential formular
(DE). The DE formula shows rapid convergence. In this paper,
the number of sampling points was 100 or 1000.
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