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The anisotropic Gaussian basis sets were optimized for the H atom and the hydrogen molecule in strong
magnetic fields of 0-1000 a.u. We used five-parameter fit functions to generate anisotropic Gaussian exponents
of hydrogenic atomic orbitals. These functions provided errors of energy that were comparable to the
independent optimization of all the exponents. The optimal exponents were used to calculate the Hartree-
Fock energies of H2 at arbitrary orientations, with respect to the magnetic field. Furthermore, the double-
exponential transformation was applied to calculate highly anisotropic Coulomb integrals. Between magnetic
field strengths of 1 a.u. and 100 a.u., a molecule in a triplet ground state continuously changed its stable
orientation from the perpendicular geometry to the parallel geometry.

Introduction

Strong magnetic fields have been applied to investigate the
electronic structures of conducting materials. For example, the
de Haas van Alphen effect has been used to measure the Fermi
surface of bulk metals.1,2 The key element of the phenomenon
is that the energy levels of electrons are quantized in the
magnetic field. Furthermore, a set of degenerate levels moves
across the Fermi surface, as a magnetic field increases. In other
words, the magnetic field induces transitions between the highest
occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO). Because of the succesive transitions,
the magnetization and the other properties oscillate in the period
proportional to the inverse of field strength.

The same type of phenomenon occurs when electrons are
confined in a ring-shaped material or a cylindrical material. This
is usually referred to as the Aharonov-Bohm (AB) effect. In
the AB effect, the quantization is due to the circular boundary
condition. The transitions occur between two states that have
different angular momentum values. The spin Zeeman interac-
tions are usually ignored, compared to the orbital Zeeman
interactions, because of the large area surrounded by the
material. The period between successive transitions is deter-
mined from the flux quantization condition. The subsequent
transition occurs when the flux penetrating the conducting ring
increases by a quantum fluxΦ0 ) h/e from the preceding
transition field. The direction of the persistent current is reversed
by these transitions.3-5 The AB effect has been studied for
superconducting rings,6-8 mesoscopic metal rings,9 and semi-
coductor quantum dots.10,11More recently, the intensive studies
of this effect have been performed on carbon nanotubes.12-17

It is natural to extend such studies on bulk, mesoscopic, and
nanosized materials to those of small molecular systems, where
very accurate quantum mechanical calculations are possible.18-20

However, there is an obstacle to this extension. To induce the
level crossing in molecular systems, the required magnetic field
strength is often close to 1 a.u. (i.e., 2.35× 105 T). Electronic
states in such strong fields have been studied by atomic

physicists,21,22and later by astrophysicists,23 who were interested
in the materials near white dwarfs and neutron stars. According
to these works, electronic clouds of atoms do not have the
spherical symmetry any more. They contract in the plane
perpendicular to a magnetic field due to the strong Lorentz force.
Therefore, if molecular or atomic orbitals were expanded by
the isotropic Slater or Gaussian functions, a great number of
primitive orbitals with high angular momentum were re-
quired.24,25 Intensive studies have been performed on the
hydrogen atom to improve the accuracy of energies and
wavefunctions. Recently, Kravchenko et al. developed a com-
putational method that provides exact power series solutions
of the hydrogenic Schro¨dinger equation in a magnetic field of
arbitrary strength.26-28 The binding energies of the ground state
and several excited states were reported with an accuracy of
10-12 hartree for a field strength of 1× 10-4-4 × 103 a.u.
Reviews,29,30 books,31,32 and conference papers33 have been
published on this subject.

For the molecular quantum chemical calculations in field free
space, the Gaussian basis sets have long ago become a standard
method.34-37 In strong magnetic fields, various methods have
been examined for the two different molecular systems, the H2

+

ion38,39 and the H2 molecule.40-43 For extremely strong fields
(>1 × 108 T), i.e., 420 a.u., Landau-type orbitals have been
applied. H atoms were shown to form stable infinite chains in
a field greater than 400 a.u.44-46 For intermediate field strengths
of 0-100 a.u., Schmelcher and Cederbaum introduced aniso-
tropic Gaussian primitive orbitals to expand the molecular
orbitals effectively.47 They also multiplied the London’s gauge
factors to the Gaussian orbitals to form the gauge-invariant
atomic orbitals (GIAOs).48,49Hereafter, we refer to the method
as the anisotropic GIAO method.

Schmelcher and co-workers have been successful in applying
this anisotropic GIAO method to molecular systems such as
the H2

+ ion50-54 and the H2 molecule55,56 in a field range of
0-100 a.u. These works replaced the previous works, because
of improved accuracy. For example, they determined the
transition field strengths of H2; the ground state changes from
1Σg to 3Σu at a magnetic field of 0.18 a.u. and becomes3Πu at
>12.3 a.u. However, they have investigated only the parallel
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geometry of the molecular axis, with respect to magnetic fields.
In the preceding studies on the H2

+ ion, they have presented
two-dimensional potential energy surfaces as a function of bond
length and orientation. The energy minima of some excited states
appeared at the arbitrary angles in the range of 0°-90°.
Therefore, it is also possible that the ground states of H2 have
potential minima other than those in the parallel geometry.

Schmelcher et al.,57 as well as other researchers who tested
the anisotropic GIAO method,58 applied rather large basis sets.
To extend the studies to larger molecules or atoms, we must
know how to generate compact and efficient basis sets for a
given error level. Moreover, to enable the studies on field-
dependent properties of molecules, systematic methods must
be known, rather than numerical tables of the basis sets at several
field strengths. In this paper, we will reinvestigate the anisotropic
GIAO method in these aspects. Furthermore, we apply the
method to investigate the field dependence of the potential
energy surface of the H2 molecule.

Optimization of the Hydrogen Atomic Orbital

Before examining the molecular electronic structure, we must
determine the basis sets that will be used to expand the
molecular orbitals. In the absence of a magnetic field, those
procedures to determine the most effective basis sets for a given
accuracy have been documented in detail.36,37 However, there
seems to be less knowledge for the basis sets in strong magnetic
fields. In this section, we will describe the method to optimize
the hydrogen basis sets and subsequently present the results of
optimizations. The procedures to evaluate the molecular integrals
are given in the Appendix. As shown in Appendix A-4, the
double-exponential transformation59 was efficient to calculate
numerically highly anisotropic Coulomb integrals.

According to the recipes of Schmelcher and co-workers, we
can expand the hydrogen atomic wave function by the aniso-
tropic Gaussian orbitals,øk

m,νz:

whereNg is the number of primitive Gaussian functions and
øk

m,νz is given by

wherem is the magnetic quantum number andνz is thez-parity.
The normalization factor (Nm,νz(ú̂k)) is given by

The expansion coefficientscbT ) [c1 ‚‚‚ cNg] are obtained by
solving the eigenvalue equation:

whereĤ is the one-electron Hamiltonian andŜ is the overlap
matrix. øj

m,νz/ is the complex conjugate oføj
m,νz.

The ground-state energy within the (m,νz) manifold (εm,νz

1 )
was optimized with respect to the 2Ng parameter sets{ú⊥,k,úz,k}.
The optimization procedure used the gradient ofεm,νz

1 , with
respect to the exponents, which can be calculated by the

following equation:

In the aforementioned equation, the gradient matrices∇úBĤ and
∇úBŜ are obtained from the matrix elements ofĤ andŜ for the
higher polarization states, because the following relations are
satisfied for the derivatives of basis sets:

The independent optimization of all the 2Ng parameters was
possible, even forNg ) 10. However, the initial parameters must
be set close to the final optimized values, otherwise, the
optimization proceeds very slowly. Therefore, the initial sets
must be obtained from a few parameter optimization by
assuming suitable relations between{ú⊥,k,úz,k}. The variational
calculations of the hydrogenic atom and the molecular ion H2

+

often used the mixed Slater-Gaussian-type orbitals, which are
expressed by60-64

The parameterb vanishes when the magnetic field strengthB0

is zero. It approaches a value of1/4B0 asB0 increases. Because
the Slater function can be expanded by Gaussian functions,65

we can assume some relation between the perpendicular
exponents and thez-exponents;ú⊥,k ) ú⊥,k(úz,k,B0). We will test
the following two-step procedure to generate the exponents. At
first, the parallel components of the exponents were generated
by

where

The aforementioned equation reproduces the Huzinaga’s 10
exponents of the H 1s orbital, whenúz,1 ) 1170.498,â ) 6.7,
and γ ) 0.785.35 We examined two functions that generated
the perpendicular componentsú⊥,k from ú⊥,k andB0. The first
function was given by

whereδ was fixed toa value of 2.35. The three parameters (úz,k0,
â, and γ) in eq 8 were optimized. The second function was
given by

whereη andê were variables. The total five parameters were
optimized under the restrictionê g0.

Φm,νz
(x,y,z) ) ∑

k)1

Ng

ckøk
m,νz (1)

øk
m,νz(x,y,z) ) Nm,νz

(ú̂k){x + i sgn(m)y}|m|zνz exp{-ú⊥,k(x
2 +

y2) - úz,kz
2} (2)

Nm,νz
(ú̂k) ) {π3/2(2ú⊥,k)

-(m+1)(2úz,k)
-1/2(2νz+1)m!2-νz ×

(2νz - 1)!!}-1/2 (3)

∑
k

〈øj
m,νz/ |Ĥ|øk

m,νz〉ck ) εm,νz ∑
k

〈øj
m,νz/ |Ŝ|øk

m,νz〉ck (4)

∇úBεm,νz

1 )
cbT‚(∇úBĤ - εm,νz

1 ∇úBŜ)‚cb

cbT‚Ŝ‚cb
(5)

∂

∂ú⊥,k
øk

m,νz ) {m + 1
2ú⊥,k

- (x2 + y2)}øk
m,νz (6)

∂

∂úz,k
øk

m,νz ) {2νz + 1

4úz,k
- z2}øk

m,νz (7)

ψ ≈ exp(-ar - bF2)

úz,k ) úz,1 exp{-(k - 1)γ ln â}

) úz,k0
exp{ln â[(k0 - 1)γ - (k - 1)γ]} (8)

k0 ) int(Ng

2 ) + 1 (9)

ú⊥,k ) {úz,k
δ + (14 B0)δ}1/δ

(10)

ú⊥,k ) B0 x 1
16

+
η(úz,k/B0) + (úz,k/B0)

2

1 + ê(B0/úz,k)
2

(11)
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The results of the optimizations are summarized in Figure 1.
The error in energy was calculated by using the exact energies
reported by Kravchenko et al.27 The errors of the optimization
based on eqs 8-10 are much larger than those of the
independent optimization, whenNg is the largest. However,
eqs 8, 9, and 11 provided the comparable values to those of the
independent optimization.

Kravchenko and Liberman proposed a different scheme to
generate the 1s0 hydrogen basis sets in strong magnetic fields.57

They used the even-tempered exponents,66,67 which corre-
sponded toγ ) 1 in eq 8. Furthermore, they used the multiple
sets{ú⊥,k

j ,úz,k}, where the total number ofj was 1-5. They
obtained errors between 10-9 hartree and 10-6 hartree for the
fields of 1-1000 a.u., using 70 Gaussian functions. Forty
Gaussian functions were applied to obtain accuracy that is
comparable to our best results. Thus, our results are a factor of
4 more economical than these results.

Some of the optimal exponents are plotted in Figure 2. These
were obtained by the independent optimization of all the
exponents. The optimal parameters based on eqs 8, 9, 11 are

listed in Table 1. In Figure 2, the curves of thez-components
úz,k shift upward, as the magnetic field increases. The magnitudes
of shifts are different for the three types of polarization. The
2p-1 polarization shows the largest shifts. The perpendicular
componentsúxy,k ) ú⊥,k are close toúz,k, whenúz,k . 1/4B0. They
are saturated at the levels of1/4B0, whenúz,k , 1/4B0. This means

that electrons are confined within the region ofxx2+y2 e

2/xB0.

The Hydrogen Molecule

In the first part of this section, we will examine the selection
of basis functions, especially, the p-type polarization functions
for the Hartree-Fock (HF) calculations of H2 in strong magnetic
fields. Next, we will use those basis functions to calculate the
electronic energies and the wavefunctions, as a function of the
magnetic field strength and the molecular geometry.

The hydrogen p-type orbitals are usually added to represent
the distortion of the s-type atomic orbitals by the zero-field
molecular orbital calculations. They are called the polarization
functions.68 The exponents of the polarization functions are
usually determined to minimize the total molecular electronic
energy. The exponents obtained by this procedure can be very
different from those of the atomic 2p orbitals. For example,
the 6-311G** basis set by Pople contains a hydrogen p-type
polarization function with an exponent of 0.75; this value is
comparable to the middle exponent of the five s-type functions.69

On the other hand, the procedure is inappropriate for the triplet
state, especially for the3Πu state. The HOMO of this state
consists mainly of the 2p-1 orbital. Therefore, it would be better
to use the atomic 2p orbitals instead of optimizing a single set
of p-functions.

Here, we will test the two types of basis sets. In both basis
sets, we used the five Gaussian functions obtained via the energy
optimization of the atomic 1s0 orbital. These were split to the
inner, the intermediate, and the outer orbtals, which contained
3, 1, and 1 primitive Gaussian functions, respectively. In the
first method, we added a single set of isotropic or anisotropic
p-type Gaussian functions to the s-type set, and optimized their
exponents and the bond length. The exponents of the pz orbital
were assumed to be different from those of the px and the py
orbitals. The former exponents were determined by the calcula-
tions in the parallel geometry, whereas the latter were deter-
mined by those in the perpendicular geometry.

In the second method, we added the three sets of 2p0

exponents and the three sets of 2p-1 exponents obtained in the
previous section without contractions. The former sets were used

Figure 1. Errors in the orbital energy of an atomic hydrogen calculated
with the anisotropic Gaussian basis sets. The errors were measured
from the exact values of ref 27. The closed characters were obtained
by the optimization using eqs 8-10. These sets of exponents were used
as the initial parameters in the independent optimization of all the
exponents. The results are shown by the open characters. The different
characters are used to distinguish the numbers of Gaussian orbitalsNg.
The crosses (×) correspond to the results of the optimizations using
eqs 8, 9, and 11. This optimization was performed only for the largest
values ofNg. The notations 1s0, 2p0, and 2p-1 refer to the lowest-energy
levels with the symmetry (m,νz) ) (0,0), (0,1), and (-1,0), respectively.

Figure 2. Optimal exponents of the 5s1p and the 5s3p basis sets. The
5s orbitals and the 3p orbitals for the different polarizations, 2p-1 and
2p0, were determined by the energy optimazations of a hydrogen (H)
atom. All the exponents were varied independently. The perpendicular
componentsú⊥,k ) úxy,k are represented by the closed characters, whereas
the z-components,úz,k, are represented by the open characters. The
exponents of the 1p orbitals are represented by the two connected bars.
The upper holizontal bars represent the values ofú⊥,1, whereas the lower
bars represent those ofúz,1. The exponents increase monotonically, as
the field strength increases. These values were obtained from the energy
optimizations of the singlet state of a H2 molecule.

TABLE 1: Best-Fit Parameters of Hydrogen Atomic
Orbitals, According to Eqs 8, 9, and 11

B0 (a.u.) γ úz,k0 â η ê

1s0, Ng ) 10
1 0.75 3.95875 7.12537 0.0424609 0.0291636

10 0.71 10.4565 10.5976 0.120107 0.0388161
100 0.71 31.5400 12.0437 0.162815 0.0371274

1000 0.71 54.2199 11.1100 0.184319 0.0341019

2p0, Ng ) 7
1 0.84 0.388684 3.65292 0.125198 0.0282317

10 0.84 0.753819 3.93842 0.139638 0.0141082
100 0.84 1.203698 4.28456 0.132807 0.00686369

1000 0.84 1.600656 4.60689 0.214121 0.00551230

2p-1, Ng ) 7
1 0.78 0.832207 5.05702 0.136032 0.0390614

10 0.81 3.00447 5.01371 0.241611 0.0440947
100 0.82 8.87282 5.16754 0.262666 0.0351179

1000 0.86 25.3203 4.73697 0.280796 0.0305946
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for the pz orbitals, whereas the latter sets were used for both
the px and py orbitals. Only the bond length was optimized in
the second method. Hereafter, these two basis sets are referred
to as 5s1p and 5s3p. Through this paper, we applied only the
HF method to calculate the electronic energies. The wavefunc-
tions obtained by this method are easily visualized. We describe
the details of the algorithms to evaluate the molecular integrals
in Appendices A-1-A-4.

The results of the optimizations for the singlet states are
shown in Table 2. We also present the results of the configu-
ration interaction (CI) calculations by Detmer et al. for
comparison.55 The energies of the 5s1p basis sets are always
lower than those of the 5s3p basis sets, by 0.1-2.8 × 10-3

a.u., when the magnetic field is parallel to the internuclear
vector. However, this order is reversed for the perpendicular
geometry. The energies of the 5s3p basis sets are lower than
those of the 5s1p basis sets by 1.3-17.1× 10-3 a.u. The optimal
exponents of the 5s1p basis are plotted in Figure 2 with bars.
The upper horizontal bars correspond toú⊥,k, whereas the lower
bars correspond toúz,k. The exponents are almost isotropic at
B0 ) 1 a.u.; however, they becomes anisotropic forB0 g
10 a.u. For the 2p-1 type polarization, the optimal exponents
of the 5s1p sets are within the ranges of the atomic 3p exponents.
However, for the 2p0-type polarization, the optimal values of
úz,k are always larger than those of the 3p exponents. The
differences are noticeable for the field strengths ofB0 ≈ 0 a.u.
andB0 g 100 a.u. The 5s3p set can be applied for the singlet
state if a single set of pz exponents is added.

The electronic energies of the singlet state were always the
lowest when the molecule was parallel to the magnetic field.
For confirmation, we have calculated the potential energy
surface (PES), as a function of the interproton distance, and
the rotational angle of the molecule, with respect to a magnetic
field. We used the 5s3p basis set. The results are shown in
Figure 3. This behavior of the preferred orientation is attributable
to the diamagnetic nature of the singlet orbital, because the
diamagnetic energy1/8B0

2(x2 + y2) has a minimum in the parallel
orientation. Because of the anisotropic shape of the 1s0 orbitals,
the equilibrium bond length is much shorter in the perpendicular
orientation than that of the parallel orientation. Therefore, the
internuclear Coulomb repulsion also destabilizes the perpen-
dicular orientation.

We repeated the same procedures for the triplet states, and
the results are listed in Table 3. We also present the results of

the CI calculations by Detmer and co-workers.55,56For the triplet
states, the 5s1p basis set was inappropriate in the field range
(B0 g 10 a.u.). This basis set always gave energies larger than
those calculated with the 5s3p basis set. For the parallel
orientation andB0 e 1 a.u., both the basis sets provided almost
the same energies, because the wavefunction was very close to
those of two non-interacting atomic hydrogens in the 1s0 state.
An interesting finding here was that the perpendicular orientation
was the most stable atB0 ) 1 a.u., whereas the parallel
orientation became the most stable atB0 ) 100 a.u. The
molecule must change orientation between these two field
strengths. For confirmation, we calculated the two-dimensional
PESs at the three field strengths (1, 10, and 100 a.u.) and plotted
them in Figure 4. At a field of 1 a.u., the potential minimum
was located at (RHH, Θ) ) (2.8 a.u., 90°). The minimum moved
to (RHH, Θ) ) (1.0 a.u., 37°) at B0 ) 10 a.u. and then to
(0.38 a.u., 0°) at the largest field ofB0 ) 100 a.u. The H2
molecule changed the orientation continuously between 1 a.u.
and 100 a.u. In Figure 4c, the PES shows a cusp at (RHH, Θ) )
(0.85 a.u., 0°). The present results agree with those of Zaucer
and Azman,40 who showed that the perpendicular orientation is
more stable than the parallel one atB0 ) 1 a.u. Liberman and
Peetrov reported the results which resemble but differ from the
present calculations.42 These authors performed variational
calculations at the two field strengths ofB0 ) 50 a.u. and 100
a.u. However, they ignored the fact that the two triplet states,
3Σu and 3Πu could mix with each other for the general
orientations of the H2 molecule.

Naturally, the following question arises: How does the
electron cloud deform during this continuous change of the

TABLE 2: Total Energies and Equilibrium Bond Lengths of the Singlet States of H2 versus Applied Magnetic Fields Obtained
by Various Basis Setsa

this work (HF)

basis set 5s1p (iso. p)b basis set 5s1p (aniso. p)c basis set 5s3pd Detmer et al.55 (CI)

B0 (a.u.) ε (a.u.) ú2p
iso RHH (a.u.) ε (a.u.) ú2p,⊥ ú2p,z RHH (a.u.) ε (a.u.) RHH (a.u.) ε (a.u.) RHH (a.u.)

HHB // BB0

0 -1.1326 0.95 1.39 -1.1306 1.39 -1.173436 1.40
1 -0.8465 1.2 1.22 -0.8465 1.19 1.18 1.22 -0.8464 1.22 -0.890336 1.24

10 5.9532 3.7 0.69 5.9532 4.05 3.08 0.69 5.9535 0.69 5.889023 0.70
100 90.6370 21.0 0.33 90.6360 26.6 9.8 0.33 90.6388 0.33 90.506974 0.334

HHB ⊥ BB0

1 -0.8159 1.06 1.15 -0.8159 1.06 1.03 1.16 -0.8172 1.16
10 6.3332 3.0 0.56 6.3280 3.07 1.32 0.56 6.3234 0.56

100 92.7329 25.0 0.225 92.6533 26.1 3.6 0.229 92.6362 0.23

a The five optimal Gaussian functions of the 1s0 atomic orbital were used with the 3-1-1 contraction.b Single isotropicp-type Gaussians were
added to the aforementioned 5s orbitals, and the exponent was optimized by minimizing the total molecular electronic energy. The optimal exponents
are also listed.c Single anisotropic Gaussians were added to the aforementioned 5s orbitals, and the exponent was optimized by minimizing the
total molecular electronic energy. The optimal exponents are also listed.d The three optimal Gaussian functions of the 2p0 and 2p-1 atomic orbitals
were added to the 5s orbitals without contraction.

Figure 3. Total energy contour of the singlet H2 system atB0 )
10 a.u., plotted against the molecular geometries (RHH, Θ).

The Hydrogen Molecule in Strong Magnetic Fields J. Phys. Chem. A, Vol. 111, No. 25, 20075575



molecular orientation, as the magnetic field increases? We have
calculated the amplitude and the phase of the wavefunction on
planes bisecting the molecule. For a H2 molecule in its general
orientation, with respect to the magnetic field, the rotational
symmetry is lost and there is only the inversion symmetry with
respect to the molecular center. The lowest orbital of the triplet
ground state is related to the gerade symmetry and does not
have any nodes or nodal lines. On the other hand, the HOMO
belongs to the ungerade symmetry and has a single node or a

single nodal line passing through the center of the molecule.
The phase of the HOMO changes 2π through the path rounding
the nodal line. In Figures 5-7, we plotted the amplitudes of
the HOMO at three different field strengths and for different
molecular geometries.

At B0 ) 1 a.u. and atΘ ) 0°, the HOMO is the 1σu orbital,
as shown in Figure 5a. The amplitude of the HOMO has two
maxima, which are completely separated by a nodal plane. In

TABLE 3: Total Energies and Equilibrium Bond Lengths of the Triplet States of H2 versus Applied Magnetic Field

this work (HF)

basis set 5s1p (iso. p)a basis set 5s3pa Detmer and co-workers55,56(CI)

B0 (a.u.) ε (a.u.) ú2p
iso RHH (a.u.) ε (a.u.) RHH (a.u.) ε (a.u.) RHH (a.u.)

HHB // BB0

0 -0.9995 0.012 7.6 -0.9995 7.6 -1.0000173 7.9
1 -1.6619 0.22 6.8 -1.6619 6.8 -1.6623090 7.5

10 No min.b -3.4464 0.82 -3.466244 0.82
100 No min.b -8.1794 0.38 -8.236318 0.38

HHB ⊥ BB0

1 -1.66398 0.54 2.7 -1.66413 2.7
10 No min.b -3.4987 [-3.5504,Θ ) 37°]c 0.91 [1.00]

100 No min.b No min.

a The notations of 5s1p and 5s3p are the same as Table 2.b No potential minimum was obtained; the total energy was much larger than that
obtained by the 5s3p set.c The potential minimum is located at (RHH, Θ) ) (1.00 a.u., 37°).

Figure 4. Total energy contours of the triplet H2 system at the three
magnetic field strengths,B0 ) 1, 10, and 100 a.u., plotted against the
molecular geometries (RHH, Θ).

Figure 5. Contour maps of the HOMO wavefunction for the triplet
H2 system. A magnetic field ofB0 ) 1 a.u. is applied along thez-axis.
The amplitudes in the plane containing the two protons are plotted.
The bond direction is shown by a thick line, the interproton distance
RHH is shown by the atomic unit, and∆|φ| is the separation between
the contour lines.
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Figure 5c (Θ ) 90°), the nodal plane changes to a nodal line,
and there is a finite electron density in thexy-plane. (See also
Figure 7f for the plot in thexy-plane at the larger field ofB0 )
100 a.u.) Because of this continuous distribution of the electron
density, the HOMO of Figure 5c has a little bonding character.
Therefore, the perpendicular orientation becomes more stable
than the parallel orientation atB0 ) 1 a.u.

At B0 ) 10 a.u. andΘ ) 0°, the HOMO changes to the 1πu

orbital, as shown in Figure 6a. When the molecule rotates to
the orientations shown in Figures 6b and 6c, the orientation of
the nodal line stays nearly parallel to the static magnetic field.
At the potential minimum shown in Figure 6b, the HOMO is a
distorted donut, which can be generated by mixing the 1σu and
the 1πu orbitals. The distinction between these two orbitals exists
only with the parallel geometry ofΘ ) 0°. For the general
orientations, the HOMO changes continuously as a function of
Θ andRHH. When the interproton distanceRHH is varied on the
line Θ ) 0°, a cusp appeared atRHH ≈ 0.85 in Figure 4c. We
calculated the amplitude of the HOMO atRHH ) 0.9 and plotted
it in Figure 7e. This figure does not compare with Figure 7a.
The symmetry of the HOMO changed discontinuously from 1πu

to 1σu whenRHH increases across the cusp. Therefore, the cusp
in Figure 4c is attributable to a conical intersection point between
two energy levels belonging to the ungerade symmetry. Wille

showed incompletely the existence of the conical intersections
of a H2

+ molecular ion in the magnetic field of 1 a.u.39 Kappes
and Schmelcher reported more-complete studies on the conical
intersections of the same system.51-54

Appendix A-1. The Anisotropic GIAO Method

An Gaussian gauge-invariant atomic orbital (GIAO) centered
at CB with anisotropic exponentsú̂c is given as

whererbC ) rb - CB, andcb is an integer vector, the sum of which
is the angular momentum.ABC is the vector potential atCB:

We choose thez-axis along the static magnetic fieldBB0. With
these coordinates, the exponent matrixú̂c is assumed to be
diagonal:

Figure 6. Contour maps of the HOMO wavefunction for the triplet
H2 system at a magnetic field strength ofB0 ) 10 a.u. The amplitudes
in the plane containing the two protons are plotted. The bond direction
is shown by a thick line, the interproton distanceRHH is shown by the
atomic unit, and∆|φ| is the separation between the contour lines.

Figure 7. Contour maps of the HOMO wavefunction for the triplet
H2 system at a magnetic field strength ofB0 ) 100 a.u. The amplitudes
in thexz-plane containing the two protons are plotted in panels a, b, c,
and e. The bond direction is shown by a thick line, the interproton
distanceRHH is shown by the atomic unit, and∆|φ| is the separation
between the contour lines. Panels d and f are the contour maps in the
xy-plane containing the molecular center. The former was calculated
for the molecular geometries identical to that of panel a, and the latter
corresponds to panel c. Panel e was calculated for the orientationΘ )
0° and at an interproton distance slightly longer than the3Πu-3Σu

crossing point.

cbC ) ∏
i)x,y,z

ri,C
ci exp(- rbC

T‚ú̂c‚ rbC - iABC‚ rbC) (A1)

ABC ) 1
2
BB0 × CB ) 1

2
B0ebz × CB (A2)
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Schmelcher and Cederbaum proposed a unique method to
generate the molecular integrals of the higher angular functions
from those between the 1s Gaussian functions.47 They introduce
a new parameterJB and multiplied the exponential function by
the pair of the s-type primitive GIAO orbitals:

The atomic orbitals with higher angular momentum were
obtained by the differentiations with respect to the components
of JB:

This algorithm is simpler than those that apply the differentia-
tions, with respect to nuclear coordinates.70-73 We also refer
the reader to the recent paper by Ishida on isotropic GIAO
integrals.74

The basic integrals were obtained in the same way as that
done by Boys34 and also by Singer.75 The important modification
from the ordinary molecular integrals is that the positional vector
PB is replaced by the complex vectorPB′′, which is given by the
following equation:47

The basic overlap integrals are calculated to be

where

The normalization constant is given by the following equation:

The basic electron nucleus attraction integrals are given by the
following equations:

We will rewrite the aforementioned integral with the new

variablet, which is given by the following equation:

Equation A13 becomes

Whenú⊥ ) úz, the aforementioned integral reduces to the zeroth-
order incomplete gamma function,F0:

The basic electron repulsion integrals (ERIs) are given by
the following equation:

Here, two vectorsJB1 andJB2 are introduced for the two electronic
coordinates,rb1 andrb2, respectively. The final results reduce to
the following form:

whereQB′′ is the complex vector analogous toPB′′, but for atoms
C and D. The three components of the tensorF̂ are given by
the following equation:

The molecular integrals between the s-type orbitals are obtained
from the aforementioned formulas, whenJBi are set to the null
value.

Appendix A-2. The Recurrence Relations between
Electron Repulsion Integrals (ERIs)

To derive the recurrence relations between the ERIs,73 we
need only the following two relations for the differentiations,
with respect toJBi:

ú̂c ) [úc,⊥ 0 0
0 úc,⊥ 0
0 0 úc,z

] (A3)

{0BC*0BD}JB ) 0BC*0BD exp(JBT‚ rb) (A4)

cbC* dBD ) [ ∏
i)x,y,z

( ∂

∂Ji

- Ci)ci( ∂

∂Ji

- Di)di

{0BC*0BD}JB]
JB)0

(A5)

PB′′ ) ú̂ab
-1(ú̂aAB + ú̂bBB) + i

2
ú̂ab

-1 ABAB + 1
2

ú̂ab
-1JB (A6)

ú̂ab ) ú̂a + ú̂b (A7)

ABAB ) ABA - ABB (A8)

(0BA*0BB)JB ) π3/2(úab,⊥
2úab,z)

-1/2KAB(PB′′) (A9)

KAB(PB′′) ) exp(PB′′Tú̂abPB′′ - ABTú̂aAB - BBTú̂bBB) (A10)

Nab ) (2

π)3/4

∏
i)x,y,z

úa,i
1/4(4úa,i)

ai/2

{(2ai - 1)!!}1/2
(A11)

(0BA* rC
-10BB)JB ≡ 2π-1/2∫0

∞
du(0BA* exp(-u2rC

2 + JB‚ rb)0BB)

) 2πKAB(PB′′)I(ú̂ab,
98
P′′C )(0B) (A12)

I(ú̂,
98
P′′C )(0B) ) ∫0

∞ du

(u2 + ú⊥)(u2 + úz)
1/2

×

exp{-
u2ú⊥P′′C⊥

2

u2 + ú⊥

-
u2úzP′′Cz

2

u2 + úz } (A13)

t2 ) u2

u2 + úz

(A14)

I(ú̂,
98
P′′C )(0B) ) ∫0

1
dt

ú⊥
-1

1 - t2(ú⊥ - úz)/ú⊥

×

exp{-úzP′′C⊥
2 t2

1 - t2(ú⊥ - úz)/ú⊥

- úzP′′Cz
2t2} (A15)

lim
ú⊥,úzfúiso

ú⊥I(ú̂,
98
P′′C )(0B) ) ∫0

1
dt exp(-úisoP′′C2t2)

) F0(úisoP′′C2) (A16)

(0BA*0BBr12
-10BC*0BD)JB1,JB2 ) 2π-1/2∫0

∞
du(0BA*0BB ×

exp(-u2r12
2 + JB1‚ rb1 + JB2‚ rb2)0BC*0BD) (A17)

(0BA*0BBr12
-10BC*0BD)JB1,JB2 ) 2π5/2KAB(PB′′)KCD(QB′′) ×

∏
k)x,y,z

(úab,k + úcd,k)
-1/2I(F̂,

98
P′′Q′′ )(0B) (A18)

Fk )
úk,abúk,cd

úk,ab + úk,cd
(A19)

∂

∂Jk,1
KAB(PB′′) ) P′′kKAB(PB′′) (A20)

( ∂

∂Jk,1
)I(F̂,
98
P′′Q′′ )(nb) ) -úk,ab

-1FkP′′Q′′kI(F̂,
98
P′′Q′′ )(nb+1Bk)

(A21)
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The following integrals are analogous to the higher-order
incomplete gamma functions:

The vertical recurrence relation is given by the following
equation:76

In the aforementioned calculation, initially, the inner differentia-

tion was executed, thenP′′Ax andP′′Q′′x were exchanged with
the differential operators,∏i)x,y,z (∂/∂Ji,1 - Ai)ai. The important
modifications of eq A23 from the corresponding equation in
ref 73 are that the vectorPB and the exponentúab,iso are replaced
by the complex vectorPB′ andúab,x, respectively. The complex
vectorPB′ is given by the following equation:

In the same way, the LRL-HS recurrence relation77,78 can be
derived:

The horizontal recurrence relation is simply derived from the
following equation:76

The same relation is also satisfied forcb anddB. Similar recurrence
relations can be easily derived for the overlap and the electron-
nucleus attraction integrals.

Appendix A-3. The Kinetic Integrals

The kinetic energy integrals are easily obtained from the
overlap integrals. The operator of kinetic energy is defined by
the following equation:

where AB(rb) ) 1/2BB0 × rb is the vector potential atrb for the

TABLE 4: Comparisons of the Two Integration Methods: The Gauss-Legendre Quadrature Method (GL) and the
Double-Exponential Formula (DE)

Npoint I (98
0 )(ú̂,
98
P′C1 )GL

a,b I (98
0 )(ú̂,
98
P′C1 )DE I (98

0 )(ú̂,
98
P′C2 )GL

a,c I (98
0 )(ú̂,
98
P′C2 )DE

10 0.0118636102 0.0126819596 -0.0344932507 347.6521742820
14 0.0123507237 0.0126785910 0.4915735505 153.0265189884
19 0.0125756000 0.0126784402 -3.6922388008 316.9291153394
26 0.0126586630 0.0126784426 25.6166742405 257.1203955984
36 0.0126766118 0.0126784426 -113.0154738400 262.7458865742
50 0.0126783783 0.0126784426 -0.5707574670 262.8377134995
70 0.0126784420 0.0126784426 386.5494234809 262.8378762291
98 0.0126784426 0.0126784426 283.0116945927 262.8378762387

138 0.0126784426 0.0126784426 262.2019804186 262.8378762387
195 0.0126784426 0.0126784426 262.8385683866 262.8378762387
275 0.0126784426 0.0126784426 262.8378761198 262.8378762387
388 0.0126784426 0.0126784426 262.8378761841 262.8378762387
548 0.0126784426 0.0126784426 262.8378704249 262.8378762387
774 0.0126784426 0.0126784426 262.8378733743 262.8378762387

1094 0.0126784426 0.0126784426 262.8378748681 262.8378762387
1547 0.0126784426 0.0126784426 262.8378747120 262.8378762387
2187 0.0126784426 0.0126784426 262.8378735895 262.8378762386
3092 0.0126784426 0.0126784426 262.8378735598 262.8378762387
4372 0.0126784426 0.0126784426 262.8378738956 262.8378762387
6182 0.0126784426 0.0126784426 262.8378734302 262.8378762387

a ú⊥ ) 250; úz ) 1.8. b Re{ú⊥P′C1⊥
2} = 0; Im{ú⊥P′C1⊥

2} = 0; úzP′C1z
2 = 0. c Re{ú⊥P′C2⊥

2} = - 15; Im{ú⊥P′C2⊥
2} = 20; úzP′C2z

2 = 0.

I(ú̂,
98
P′′Q′′ )(nb) ≡ ∫0

1 dt

úzt
2 + ú⊥(1 - t2)

×

{ úzt
2

úzt
2 + ú⊥(1 - t2)}nx+ny

t2nz ×

exp{-P′′Q′′⊥
2ú⊥

úzt
2

úzt
2 + ú⊥(1 - t2)

- P′′Q′′z
2úzt

2} (A22)

((ab + 1Bx)A*0BBr12
-10BC*0BD)(nb) ) [ ∏

i)x,y,z
( ∂

∂Ji,1

- Ai)ai

×

( ∂

∂Jx,1

- Ax)(0BA*0BBr12
-10BC*0BD)JB1,JB2

(nb)]
JB1)J2)0

) P′Ax(abA*0BBr12
-10BC*0BD)(nb) -

Fx

úab,x
P′Q′x ×

(abA*0BBr12
-10BC*0BD)(nb+1Bx) - (12)axúab,x

-1

{((ab - 1Bx)A*0BBr12
-10BC*0BD)(nb) -

Fx

úab,x
((ab - 1Bx)A*0BBr12

-10BC*0BD)(nb+1Bx)} (A23)

PB′ ) ú̂ab
-1(ú̂aAB + ú̂bBB) + i

2
ú̂ab

-1ABAB (A24)

(abA*0BBr12
-1(cb + 1Bx)C*0BD)(nb) )

-
úab,x

úcd,x
((ab + 1Bx)A*0BBr12

-1cbC*0BD)(nb) +

(Q′Cx +
úab,x

úcd,x
P′Ax)(abA*0BBr12

-1cbC*0BD)(nb) +

(12)cxúcd,x
-1(abA*0BBr12

-1(cb - 1Bx)C*0BD)(nb) +

(12)axúcd,x
-1((ab - 1Bx)A*0BBr12

-1cbC*0BD)(nb) (A25)

( ∂

∂Jk
- Bk) ) ( ∂

∂Jk
- Ak) + ABk (A26a)

(abA*( bB + 1Bx)Br12
-1cbC* dBD)(nb) ) ((ab +

1Bx)A* bBBr12
-1cbC* dBD)(nb) + ABx(abA* bBBr12

-1cbC* dBD)(nb)

(A26b)

T̂ ) (12)ΠB2 ) 1
2
(-i∇B + AB)2 (A27)
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symmetric gauge. The kinetic energy integrals are calculated
from the overlap integrals:

To use the aforementioned formula, the overlap matrices
((ab + 1Bk)A*(bB + 1Bl)B) were calculated.

Appendix A-4. The Numerical Integration of Coulomb
Integrals

If the exponents are very anisotropic (ú⊥ . úz), the term{1
- t2(ú⊥ - úz)/ú⊥}-1 in eq A22 almost diverges att ≈ 1. The
ordinary numerical integrations, such as the Gauss-Legendre
quadrature, were inefficient. This difficulty was resolved by the
double exponential transformation:59

The new variable (V) was sampled at the evenly distributed
points in the range from 0 toπ. In Table A1, we compare the
convergence of the two integration procedures: the Gauss-
Legendre method (GL) and the double-exponential formular
(DE). The DE formula shows rapid convergence. In this paper,
the number of sampling points was 100 or 1000.
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